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Interaction theory and Lagrangian electrodynamics 

D. LEITER 
Physics Department, Boston College, Chestnut Hill, Massachusetts, U.S.A. 
MS. received 3 1 s t  March 1969, in revised f o r m  24th September 1969 

Abstract. Cornish argues that the ‘interaction theory’ of electrcdynEmics may 
provide a much simpler description of radiation processes than that of ccnl-en- 
tional Maxwell-Lorentz electrodynamics, but is unable to derive it frcm a varia- 
tional principle. In  this paper we exhibit the fact that a variaticnal principle 
exists which contains the interaction theory as a special case. 

1. Introduction 
Cornish (1965) has shown how to develop various classes of electromagnetic 

theories by assuming that Maxwell’s equations hold for point charges, and then 
regarding the equations of motion of the point charges as derivable from various 
modified forms of the energy momentum tensor. 

In  particular, he has discussed the ‘interaction theory’, in which the equations of 
motion do not contain conventional radiation reaction terms, but account for 
mutual retardation effects between the various point charges in the system. He has 
argued that the ‘interaction theory’ has advantages over that of the conventional 
Maxwell-Lorentz electrodynamics, and can provide a much simpler description of 
radiation processes. However, he is unable to derive this theory from a variational 
principle, which he feels is a chief disadvantage. 

The  purpose of this paper is to exhibit the fact that a variational principle exists 
which contains the ‘interaction theory’ as a particular member of a general class of 
electrodynamic theories. 

2. A Lagrangian formulation for ‘interaction theory’ electrodynamics 
We shall consider a model universe filled with N charged point particles. The  

action principle which contains the ‘interaction theory’ of electrodynamics of this 
system can be written as 

N N N 

I = J 2 d % , B ~ ~ K ) % ” +  1 dX4 2 2 ( B F ~ F U , ( J ) + J ~ ) A , [ ( J , )  (1) 
K = l  K = l  J f K  

where 

4K), dT(K), 4) and m ( K )  

are the Kth  particle’s trajectory, proper time, 4-velocity and mass, respectively. 
.F$, is the Kth  particle’s Maxwell field where 

and 

is the Kth  particle’s 4-current density. Setting 6 1  = 0 with respect to, 6xFK) and 
6AyKtK, yields the equations of motion 
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and the 'Maxwell equations' 

If we choose the Lorentz gauge 

J # K  J # K  

If there are no less than two charged particles in the system, then N >, 2 and (7) can 
be solved algebraically for the individual [7ALJ) terms (since the determinant of their 
coefficients is non-zero) as 

( J )  ( J )  CIA, =.I, . (9) 

(10) 

We can solve (9) as 
N 

Ay) (x )  = /dx4  2 D J K ( x - - ~ ' ) J F ( x ' )  
K = l  

by using a Green function DJK(x -x ' )  obeying the equation 

~ D " ( x - x ' )  = a 4 ( ~ - ~ ' ) a J K K .  (11) 
In  (10) we exclude homogenous solutions, unconnected from currents, since they 

should not play a role in the 'mutual interactions' which act as building blocks in the 
'interaction theory'. The most general solution to (11) is 

where 
D J K ( z  - x ' )  = D + ( x -  x')GJK + X J K D - ( x - ~ ' )  

D * ( x - x ' )  = ${Dret (x -x ' )  5 D,dV(x-"t"')} 

(1-2) 

(13) 

and A J K  is an arbitrary constant matrix, to be determined. Substituting (10) and (12) 
into (4) yields the equations of motion 

This equation of motion, with (10) and (2), represents a class of electromagnetic 
theories (parameterized by A K L )  for which the 'interaction theory', discussed by 
Cornish, is a member. In  particular, if A K L  = S K L  is chosen then (14) becomes the 
'interaction theory' equations of motion 

Of course, if N = 1 then we must go back to (l), which implies that 

dp;' 
dt 
-- - 0. 
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This means that a particle alone in the model universe cannot interact with itself. 
The  conservation laws, obtained from ( 5 )  and (15), with X K J  = FJ, are 

N N 

(17a) 
(K) ( J ) v  Tuviv - - c c J v  Fu 

K = l  J # K  

in agreement with those used by Cornish to calculate dipole radiation and collision 
processes. 

3. Conclusions 
We have shown that the ‘interaction theory’ of electrodynamics discussed by 

Cornish (1965) is a member of a generalized class of theories which are derivable from 
a single variational principle, thus removing the chief disadvantage of the develop- 
ment of the theory. However, in the process we have revealed an entire class of 
electrodynamic theories (parameterized by X K  J ,  for which the ‘interaction theory’ is 
but one member (corresponding to AK = aK A study of the physical implications 
of this wider class of solutions and its relationship to the process of electromagnetic 
measurement has been discussed elsewhere by Leiter (1969 a, b). I t  has been shown 
to contain a theory similar to that of Wheeler-Feynman electrodynamics (Wheeler 
and Feynman 1945, 1959), with the distinct advantage that retardation and radiation 
reaction can be accounted for without the use of any ‘complete absorber’ condition. 
In  addition, the infinities associated with self-interaction are absent from this theory 
(as they are for the entire class of parameterized theories). 

Now, it is true that this kind of formalism, requiring an external condition restrict- 
ing the class of allowed solutions, can lead to considerable difficulties if a conventional 
‘second quantization’ is attempted. However, there is no difficulty if one merely 
attempts to replace the point-mechanical degrees of freedom with wave-mechanical 
degrees of freedom. Theories of this fashion have been constructed from Wheeler- 
Feynman electrodynamics by Hoyle and Narlikar (1969) (utilizing a Feynman-Hibbs 
path integral approach to quantization). Also a wave-mechanical extension of the 
parameterized theory presented here has been carried out by Leiter (1969 c, d) and 
has been shown to be able to predict the same results as that of Hoyle and Narlikar 
(but without the need for a complete absorber condition or steady-state cosmology). 
Hence it is a possibility that the extension of this class of theories (or a member of this 
class) into a quantum framework may lead to a reformulation of electrodynamics and 
quantum theory, which avoids the divergence problems which make the present form 
of quantum electrodynamics an inconsistent theory. 
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